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Abstract 

In recent years it has become more apparent how useful inequivalent representations of the 
CCR and CAR in quantum field theory may be in describing and explaining physical 
phenomena, and several properties and concepts have been stated, referred to, and/or 
developed in the literature on these ideas. In this paper, some of these are reviewed, and 
some further properties and concepts are developed as further links in understanding 
these inequivalent representations in quantum field theory. One of these is a statement 
as to what actually breaks down in some field theories in the transformation between 
representations which are unitarily inequivalent. This is developed using the language 
and ideas of point quantum mechanical invariance, since this should be more familiar to 
a much larger number of physicists. Also, a statement on state expectation values is 
developed which can be used as a criterion for the occurrence of inequivalent representa- 
tions of  the CCR and CAR in field theories. 

1. Introduction 

A wel l -known  t h e o r e m  o f  V o n  N e u m a n n  s ta tes  t h a t  for  sys tems  wi th  a 
f ini te  n u m b e r  o f  degrees o f  f r e e d o m  any  t t i l be r t  space spec i f i ca t ion  is 
equ iva len t  up  to a u n i t a r y  t r a n s f o r m a t i o n  to any  o t h e r  p rov ided  t h e  canon ica l  
c o m m u t a t i o n  ( a n t i c o m m u t a t i o n )  re la t ions  are preserved.  However ,  for  
sys tems w i t h  in f in i t e ly  m a n y  degrees  o f  f r e e d o m  (i.e., for  fields) it has  b e e n  
s h o w n  t h a t  un i t a r i ly  inequ iva len t  r ep re sen t a t i ons  occur.  This was first  s h o w n  
in 1952  b y  L. V an  Hove,  b u t  i t  d id  n o t  d raw m u c h  a t t e n t i o n  un t i l  1955 w h e n  
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Schweber, Wightman, and Ggrding developed more of the mathematical 
details of this phenomenon. One need not be alarmed by the appearance of 
inequivalent representations in the theory, for it is an indispensable character- 
istic for explaining 'super' systems in a properly formulated theory of infinitely 
many degrees of freedom. Indeed, as pointed out by Hugenholtz (1969), 
'Clearly, to describe all possible states of a many-particle system we cannot 
limit ourselves to only one representation. Infinitely many representations 
are necessary'. One of the recent applications is in gaining a better under- 
standing of measurement theory (Hepp, 1972). 

In this paper a further link in understanding inequivalent representations 
of the canonical commutation and anticommutation relations in field theory 
is made with respect to the typical and well-known unitary equivalence of 
representations in point quantum mechanics. This will come from the 
definitions and conditions for quantum mechanical invariance to b e stated 
in Section 3. In the process we will also develop a useful statement which 
definitely links identifying inequivalent representations with state expectation 
values. This has been alluded to previously in the literature. In Section 2 we 
will basically recall what is meant by inequivalent representations in the con- 
text which we will use them and illustrate this with an example. In Section 3 
we will develop the links which give further insight into inequivalent rep- 
resentations. 

2. Inequivalent Representations 

As is well known, using some very involved mathematics, Von Neumann 
(1931) showed that for systems with a finite number of degrees of freedom, 
i.e., for systems considered in point quantum mechanics, all irreducible 
representations of the commutation relations given by 

[qi, Pk ] = i~ik 

[p~, pk]  = [qi, qk] = o (2.1) 

(i, k --- 1, 2 . . . .  , N ( N  finite), that is, all representations where the operator 
set (q, p) forms a complete set in the I-filbert space, are equivalent up to a 
unitary transformation. Thus, if a set of operators (q, p) satisfies equation 
(2.1), and another set (q', p') satisfies [q~, p~] = i5ig, etc. then these sets 
are related by a unitary transformation U in the following manner: 

t t 
qk = Uktc U- l ,  Pg = UPk U-1 (2.2) 

The operator algebra must, of course, be enlarged to contain the operators 
corresponding to intrinsic degrees of freedom such as spin. 

A good illustration of this theorem is given by the following example of a 
change from one representation to another in ordinary quantum mechanics, 
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and we show it to be unitary (Roman, 1965). Consider two Hitbert space 
descriptions of a quantum mechanical system, 

H H (Hilbert spaces) 

[ n) i h ) (states) 

O 0 (operators) 

Due to the completeness of  the basis sets we can make the expansions: 

In) = ~ In)<n] n) 

in) = ~ In)<ni-n) 
/7 

Looking at the operators, O, and vectors, V, in H in terms of those in H, we 
have 

(~ O I m ) =  Y. ( ~ [ n > < n [ O I r n ) ( m i ~ )  
n ,  m 

(~[ V)= ~ (n tn ) (n  I V) 

or in shorthand notation, 

where 

We then have 

Consequently, 

Oh~ a = TnnOnmRmm 

TnnT~' = ~ < f i l n > < n l ~ ' ) = < f f l ~ ' > = 6 n ~  ' 
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TT ¢ = I, or T ? = T - 1  

and so T is a unitary transformation. In this case T does not represent an 
operator. The matrix representative of an operator is defined in a given 
representation, whereas T straddles the two representations. However, when 
the basis vectors are labelled by the same set of  indices, one can define a 
linear operator U such that 

In>= UI'~) 

which means that U can be represented by 

U= ~ In ) (~ l ,  U ¢ = ~ Ih')<nl (2.4) 
n n 

so that UU ? =I, and Uis a unitary operator (Messiah, 1966). In this case the 
unitary matrix (~ I n } is the matrix representing U in the H or E¢ representa- 
tion, that is, 

( f f l n } = ( f f l U i - h ) = ( n [ U I n )  (2.5) 

(2.3) 
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This corresponds to mapping a Hilbert space back onto itself. Again, the 
transformation is unitary. 

However, for systems with infinitely many degrees of freedom (i.e., for 
fields) not all irreducible representations of the commutation relations are 
unitarily equivalent as has been shown by various authors. Van Hove (1952) 
and Friedrichs (1953) were the first to study various representations of the 
canonical commutation and anticommutation relations, but the phenomenon 
of inequivalent representations was not given much attention by physicists 
until the appearance of papers by Schweber & Wightman (1955) and Haag 
(1955). Schweber & Wightman showed the existence of uncountably many 
unitarily inequivalent representations of the canonical commutation and 
anticommutation relations. More mathematical details were given in two 
papers by G~rding & Wightman (1956). Other important works on inequivalent 
representations for the canonical commutation and anticommutation relations 
have been written by Segal (1958), Araki & Woods 41963), Ezawa (1965), 
Araki & Wyss (1964), Klauder & McKenna (1965), and Klauder, McKenna 
& Woods (1966). 

The main ideas of the theory of inequivalent representations can be 
illustrated by looking at Haag's (1961) example of a general Bose field system. 
Starting with a system of a finite number of degrees of freedom, say N, the 
Fock representation developed by Fock (1932) is used for our Hilbert space. 
Assume the system is specified by the 2N Hermitian operators, (qk, Pk), with 
k = 1 , . . . ,  N, and that these satisfy the commutation relations in equation 
(2.t). A new set of operators, ak, are then introduced by letting 

ak = (~k /2) l /2qk  + i(1/2Wk)l/2Pk, (k = 1 . . . . .  N) (2.6) 

where the co k are arbitrary, real, positive numbers. From equations (2.1) 
and (2.6) the commutation relations for the a's are 

[ai, Lai, k] = - -0  (2.7)  

Assuming that the Fock vacuum state, l O), defined by 

ax i O) = 0, for all k (2.8) 

exists, the Fock space is obtained by applying a~ to t O), i.e., the Hitbert 
space on which the ax and a~ operate is defined as the closure of the linear 
space spanned by the basis vectors 

IO) 

a~ lO)  = Ik)  

a 4to>--tkj> 
. . .  ( k , j =  1 , . . . , N )  (2.9) 

In the case where N is finite, according to Von Neumann's theorem, the Fock 
representation constructed above is the only possible irreducible representa- 
tion up to unitary equivalence. (We are only interested in irreducible rep- 
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resentations of  our algebra of  operators since any reducible representation can 
be shown to decompose into a sum of irreducible ones (Von Neumann, 1940).) 
In other words, given the two sets of  canonical operators (qk, Pk) and (q}c, Pk), 
where 

t ~ t t 

qk = qk(Pk, qk), Pk = Pk(kk, qt:) (2.10) 

one can always find a unitary operator U which yields 

! ! 

q k = U q x U  -1 and p k = U p k U  -1 ( k = l  . . . . .  N) (2.11) 

as indicated in equation (2.2). The Fock vacuum for the new set (p~, q~), 
say tO'}, is related to the original Fock vacuum [O) by U, 

IO'} = UI O) (2.12) 

In quantum field theory, i.e., N becomes infinite, tI~e role of  the qk is taken 
by an infinite set of  operators, corresponding to the values of  the classical 
field 4 at every point in space; in the same way, the role of the Pk is taken by 
the values of  the conjugate field rr. For a real scalar field, 

~Y, x o = 0) = ~(~) and rr(~', x o = 0) = rr(~) = O4(x, Xo) I 
~X0 x 0 = 0 

satisfying the commutation relations 

D ( ~ ) ,  ~(~' ) ]  = [,r(~), ~r(~')] = 0 

[rr(~), ~ ' ) ]  = - i 6 3 ( ~ -  3') (2.13) 

A more precise mathematical formulation of the commutation relations is 
obtained by smearing out our fields (4, rr) with an orthogonal, real set of 
square-integrable functions, fk(k), since the physical observables are not the 
values of a field at a single point, but rather averages of (4, 70 over certain 
regions of  space. Thus, we introduce the operators 

qk = ~ ;k )  = f d3x4(x)fk(~) 

Pk = n(fk)  = f daxTr(~)fk(2) (k = 1 , . . . )  (2.14) 

as well as ak and a S in an analogous way as in equation (2.6). 
Haag then points out that one can formally construct the Fock space in 

the same way as formerly done for finite N. However, in the case now at 
hand, N-+ ~,  we no longer have Von Neumann's theorem satisfied, and there 
are other inequivalent representations in which there is no state [ O) with the 
property of equation (2.8). To exhibit this clearly, we follow Haag's example 
and transform from the original a k to a new set of  canonical operators b k 
given by 

bk = ak cosh 0k - a~ sirth 0 k 

b~ = - a~c sinh 0k + a~ cosh 01: (k = 1 . . . .  ) (2.15) 
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where for Haag's associated transformation, we take exp [20k] = COk. Taking 
ak as in equation (2.6), we have 

(ale + a~) (1/2COk) l/z = qe 

- i ( ak  - ark) (COk/2) '/2 = Pk (k = 1 . . . .  ) (2.16) 

Similarly for the b's, we have 

(b k + b~) (1 /2Wk)  V2 = q'k 

- i ( b k  - b~) (co j2 )  tfz = p~ (k = 1 , . . . )  (2.17) 

and our transformation equation (2.15) becomes in terms of (qe, Pk) ~ (q~c, Pk), 

! qk = (1/09k) 1/2 qk 

q'k = (cok)l /2Pk (k  = I . . . .  ) (2 .18 )  

so that we retain the same commutation relations for our new operators as 
for the original set. By means of equation (2.15), the Fock representation of 
the (ak, a~) also defines a representation of the (bk, b~) in the same Uilbert 
space. However, it is not possible in general to carry out a Fock construction 
for the operators (bk, b~), that is, there is no vector IO') in our Hilbert 
space which satisfies 

bk[O ' )  = 0 (for all k) 

The same is true for the unitary operator U which interlocks the operators 
(bk, b~) with the operators (ak, a~), 

b k = UakU -1 (k = 1 . . . .  ) 

in spite of the fact that the b's and the a's satisfy the same commutation 
relations. 

To explore these ideas, Haag considers the matrix elements of U in our 
defining Fock space. Formally, U is found to be 

U = exp[½ ~ Ok(a?xa~ - akak) ] (2.19) 
k 

We now want to show that U is not an operator in our defining Hilbert space, 
for all of its matrix elements between states of this space are zero. Haag 
begins by considering (O i U1 O). As is shown in the paper of  Umezawa 
& Kamefuchi (1964) on 'Bose fields and inequivalent representations', 
(Oi  U IO ) becomes with U given by equation (2.19), 

(Or UI O) = exp[-~ ~ log cosh Ok] (2.20) 
k 

which can be written as rre(cosh 0 k)-1/2. Therefore, (O[ U tO)  4=- 0 only if 

(cosh Ox)<oo (2.21) 
k 
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From equation (2.20) we see that if we let N ~  oo and V-~ ~, such that 
N / V  = p, then 

(O 
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UIO)=N-,~-lim [I~k (cosh0e)- l /2  ] 

- lira [exp (-½ V(1/2zr) 3 ~ dak log cosh Ok} ] = 0 
N-~ = (2 22) 

Likewise, considering (~M, U~L), (where XI'M, ~L are basis vectors of our 
defining space obtained from [O)by  operating on it with the ax v M and L 
times, respectively), since a2, ak commute with a~[, a i for k 4=- i, we would 
have 

(g~M, U~L ) =I-[Fk (2.23) 
k 

where Fk 4= (cosh Ok)- i/2 at most for (M + L) factors F k. Therefore, in case 
equation (2.21) does not hold, the change of a finite number of factors will 
not change this divergence, and equation (2.23) vanishes for every finite M 
and L. Since the states ~M form a complete set, U exists in our defining 
space only if equation (2.21) holds, otherwise it vanishes. 

For L = 0, from equation (2.23), in case equation (2.21) does not hold, 

(~M, Uq*o) = (R'M, '#o) = 0 (2.24) 
! F 

i.e., 'Is 0 does not exist in our defining space, where ',I* o = [ O) and q% = [O'). 
Thus, this general-type example shows that the most important aspect 

about dynamical maps (equation (2.15) for this case) is that they are not 
generally unitarily implementable for systems with an infinite number of 
degrees of freedom. In particular, the very useful quantum field theories 
exhibiting broken symmetries are of this type, for which Umezawa's (1965) 
self-consistent field theory was formulated. 

3. Further Links 

In this section we develop the further links with inequivalent representa- 
tions of the CCR and CAR of quantum field theory stated in the Introduction. 

The test for quantum mechanical invariance given by Wightman & Barut 
(1959) can be summarized in the following manner. Given: 

H a H b (Hilbert spaces) 

] qSa) [ q~b ) (states) 

Oa Ob (operators) 

x a x ~ (coordinate relations), 

then the following two statements must hold: 

(1) Invariance of squares of state overlaps under the bodily transformation, 
B, from space 'a' to 'b', that is, 
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l(¢ba 1 ( ' ~ ) a )12  = I(Bb~-aCba ]Bb,-a(~a)a)12 (3.1) 

where (ff~)a are eigenstates of  the observables, Oa, with quantum 
numbers, a, and ~a is any state in H a given by ¢b a = E~Ce L ~ )a, 
where the Ca are expansion coefficients, and Bb,--a = (ePbtCba). In 
words, the bodily identical transformation means that one can write 
a complete description for the same system at different orientations 
using space 'a '  or 'b' .  

(2) Invariance of  squares of  state overlaps under the subjective trans- 
formation S from 'a '  to 'b ' ,  that  is, 

t(Cba l ( ~ ) a ) [  2 = [(Sb~-a% I Sb,,--a(~a)a )12 (3.2) 

In words, the subjective transformation means that the same physical 
situations can be described by space 'a '  as well as space 'b ' .  

Statements (3.1) and (3.2) can be combined into one statement for 
invariance if we consider the bodily transformation from 'a '  to 'b '  and then 
subjectively transform this bodily state of  'b '  back onto 'a', so we have 

I ( %  I ( ~ ) a )  I 2 = I(Sa~bBb~aCba iSa,-bBb+-a('dffo~)a)l 2 (3.3) 

As is well known, in quantum mechanics the transformation U =- Sa~bBb,.-- a 
conserves state expectation values and is unitary (Messiah, t966),  and S 
usually taken as the identity, L Then U= Bb,-a and, of  course, B b ~  a is 
unitary, as it must be from Von Neumann's theorem and as shown for a 
general-type case in the first part o f  Section 2. Also, Wigner's theorem (Wick, 
1965) guarantees that  U is unitary if equation (3.3) holds. 

However, for field theories exhibiting inequivalent representations of  the 
CCR or CAR the typical result, as illustrated in Section 2, is 

( ¢ba I U I q~a ) = ( ¢Pa l Sa,-bBb,--a t ~a  > = 0 (3.4) 

Of course, the immediate question from this is whether equation (3.4) implies 
unitarily inequivalent representations or not, and we show here that  it does 
indeed in the context  o f  the physically relevant broken symmetry  field 
theories. This has been alluded to in the literature, and we will use some of  the 
developments of  Guralnik, Kibble & Hagen (1968) to establish it. 

In the context of  the quantum field theory we are using, for U to be a 
unitary operator, three things are needed, 

(1) V(,~)U*(c0 = Z 
(2) U(oq)U(o~2) = U(0~ 1 + 0~2) 
(3) in our physical Hilbert space we assume that there is a translationally 

invariant, unique vacuum state (LSZ type of formalism), and U must 
do the right things on our states. Therefore, we must have 

Uv(~, 0 l o>  = I0>  (3.5) 
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and, in particular, for V becoming large (indicated by V-+ oo), we 
must have 

lim (Uv(a, 0 1 0 ) )  = 0 (3.6) 
V---> oo 

Or equivalently, if we consider any combination of operators A of the 
field theory being considered, 

lim (O Igv(~, t)Agtv(~, t) tO) = (O IA I O) (3.7) 
V---~ o o  

Here a represents a general constant parameterizing the transformation, 
V is the volume of the system, t is the time, and we can write U in 
general form as U = exp [i~Qv(t)], where Qv(t) is the generator of  
the transformation U in volume V. 

Consider condition (3) above more closely and see what condition we 
must have for it to be satisfied. If we can show that 

d 
du [(OIU(a, t)AU t (~, t) I O)] = 0 for all u (3.8) 

then 

(OIU(a)AUt (c~)IO)=(OIU(O)AUC (O)[O>=(OIAIO) (3.9) 

which then gives us the equivalent statement of  condition (3). Explicitly 
evaluating the derivative, 

d 
d--~ [ (01Uv(~,  t)A Utv(a, t) t0)] = i ( O l Uv(u, t) [av(t), A] Utv(~, 0 l 0)  

(3.I0) 
where [Qv(t),A] is the commutator ofQv(t  ) with A. The expression (3.10) 
will be zero if [Qv(t), A ] = O. Then from equations (3.8) and (3.9) U is 
unitary. However, if [Qv(t), A] 4= 0, then condition (3) is not satisfied, and 
Uis not unitary. One will recognize this last condition as the one for Qv(t) 
to excite 'massless' modes, typically in the case where V becomes large (oo), 
and is a result of  Goldstone's theorem (Lange, 1965). It is called the broken 
symmetry condition of  the Goldstone theorem. Therefore, when the generator 
of a transformation is involved in a broken symmetry in quantum field theory, 
the corresponding U is not unitafily implementable in our physical space. In 
fact, Fabri & Picasso (1966) have shown that the generator Q does not exist 
even in the sense of a weak limit when condition (3) is violated. 

Thus, we have from condition (3) that Uis not a unitary operator when 

Ui O) = exp (iaQ) IO) 4= [O) (3.11) 

But this corresponds to (O I U I O) = 0, since we then have the overlap of 
(OI with a state of the space other than the unique I O).This is the result we 
were looking for. 

In particular now, equation (3.4) must hold for I qSa ) = I q%) = l 0 ) ,  and 
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thus, if we have equation (3.4) holding, from above we have inequivalent 
representations in our field theory. This is one of the links we wanted to 
establish. 

Now further consider equation (3.4) to establish another link. Notice that 
the bodily transformation U in equation (2.19) is (1) an exponential and (2) 
antisymmetric in sign with respect to the adjoint operation. This is a typical 
result for many models and useful examples, and we will outline some 
others shortly. Due to these facts, there will certainly be nothing wrong with 
the bodily mapping in statements like equations (3.1) and (3.3). They will 
hold with no problems. (This is also guaranteed by writing the bodily trans- 
formation in the form exp [iaQ], as done above.) Thus, the bodily mapping 
is all right. 

Also, Wigner's theorem (Wick, 1965) says if we have equation (3.3) hold- 
ing, then Sa~-bBb~- a is unitary. However, we have just shown above that it 
is not unitary in the field theories we are considering. Thus, we have reached 
a contradiction. Equation (3.1) is all right and equation (3.3) implies unitarity, 
but for the theories we are considering the corresponding operator is not 
unitarily implementable. Therefore, since equation (3.3) comes from equations 
(3.1) and (3.2), the breakdown in unitarity must come from equation (3.2), 
i.e., the subjective transformation is not unitarily implementable. Consequently, 
it can neither be the identity, I, which is generally always chosen in point 
quantum mechanics, nor any unitary operator, or else it would have a value 
in H a. As a result, spaces 'a' and 'b' are using mathematically different Hilbert 
spaces, built upon different representations of the CCR or CAR. 

A very good example to illustrate some of the above points is the fairly 
simple model Hamiltonian of the form 

/4 = E + + ai) (3.12) 
i i 

which is essentially the famous Van Hove model (Van Hove, 1952) (trans- 
lated oscillators). For simplicity let's take the ~ f s  equal, so that 

H=h ~ • afai + h 2 Xi(ati +ai) (3.13) 
i i 

If we define an operator 

a = E (Xkak)/A, A = [E(Xi) 211/2 (3.14) 
k i 

and the corresponding adjoint, then 

H= hwata +hA(a ? + a) (3.15) 

The transformation which diagonalizes H is 

U= exp [ A (at - a)] (3.16) 

which is well known from the Van Hove model. In the limit that A ~ ~o or 
ZiXff ~ ~, U is not unitarily implementable into the diagonalized space, and 
hence, equation (3.4) holds, i.e., zero overlap. This is another example of 
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our above statement that zero overlap implies unitary inequivalence. Note 
again that the bodily transformation in equation (3. t 6) is an exponential and 
is antisymmetric in sign with respect to the adjoint operation, so equation 
(3.1) holds. Thus, again we know from our above link that two Hilbert 
spaces (the 'a' space and the diagonalized space) are incompatible with 
respect to the subjective transformation. They do not have mutually com- 
plete sets of states for description of the system. 

A very practical example of these statements comes from a recent paper 
by Benson (1973) and one by Benson & Hatch (1973). Here a ferromagnetic 
representation is self-consistently selected for the Heisenberg-exchange 
Hamiltonian using Umezawa's methods of quantum field theory. Also, a 
paramagnetic representation is found, and the zero overlaps are specifically 
calculated, and it is discussed how these representations are inequivalent 
representations of the CAR. From one of our links above, the reason for this 
inequivalence is that one cannot subjectively transform the states o f the 
ferromagnetic Hilbert space onto the states of the paramagnetic Hilbert space, 
since the set of paramagnetic states do not form a complete set of states for a 
ferromagnetic description. Thus, S is the ill-behaved part of the transforma- 
tion. 

4. Conclusion 

Thus, from the above statements we have some more links in understanding 
the very important phenomena ofinequivalent representations, and further 
insight into understanding some of the fundamental differences between 
point quantum mechanics and quantum field theory. In particular, although 
people frequently never worry at all about the structure of the subjective 
transformation, we have shown for quantum field theories that this considera- 
tion can be very important, and that one can expect inequivalent representa- 
tions of  the CCR or CAR when zero expectation values of the transformation 
operator occurs as in equation (3.4). Hopefully, further links will be forth- 
coming in the near future. 
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